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� Effect of hydrogen fuel in direct injection engine was studied.

� Use of HCNG fuel can improve engine performance and exhaust emissions.

� The SVM model could predict the engine performance and CO with error of less than 4%.

� Ignition timing, injection timing and hydrogen volume fraction at different engine speeds.
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a b s t r a c t

Engine performance parameters, including fuel conversion efficiency (FCE), power, torque

and specific fuel consumption (SFC), can be affected by variables such as ignition timing

(IGT), injection timing (IT) and hydrogen volume fraction (H2%). In this paper an engine

fueled with different H2/CNG blend rations from 0 to 50% volume under ignition and in-

jection timing at different speeds were investigated. For model validation, the engine

operating conditions were simulated using the AVL fire software and compared with

experimental results. The statistical comparison showed that there was no significant

difference between them. Also, a support vector machine (SVM) was used to study the

engine's behavior according to the variables studied. The SVM model predicted the FCE,

power, torque, SFC and CO with error of less than 4%. The Genetic Algorithm (GA) was used

to find optimal IGT, IT and H2% values to achieve optimum engine performance. Therefore,

the results showed that the optimum engine operating conditions depend on the engine

speed. Also, the results showed that independent variables (IT, IGT and H2%) maximize the

engine performance and minimize SFC and CO emission. So that the optimum use of

hydrogen in this research at different engine speeds was between 20% and 30%.

© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen fuel due to its favorable physicochemical properties

could be as sustainable fuel in future and proper alternative

fuel for internal combustion engines [1,2]. In recent years

because of emission regulations especially in big cities, the

high price of fossil fuels led to a promotion in using alternative

fuels such as natural gas and hydrogen fuel. Natural gas is

with abundant resources and clean nature for using in auto-

motive engines [3e7]. Enhancing hydrogen energy share in a

compression ignition engine improved marginally with

retarded injection timing mode [8]. An experimental study by

Khandal and colleagues showed that add hydrogen in a dual

fuel engine powered with renewable fuels has yielded better

and NOx emission decrease about 26e28% when injection

* Corresponding author.
E-mail address: arohani@um.ac.ir (A. Rohani).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/he

i n t e r n a t i o n a l j o u r n a l o f h y d r o g en en e r g y x x x ( x x x x ) x x x

https://doi.org/10.1016/j.ijhydene.2019.10.250

0360-3199/© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article as: Zareei J, Rohani A, Optimization and study of performance parameters in an engine fueled with hydrogen,
International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2019.10.250



timing is 27� BTDC [9]. Retarding ignition timing in a

hydrogen-enriched n-butanol rotary engine (3%e25%

hydrogen) cause that HC and NOx emissions were reduced

and CO emission decrease a little whereaswith the increase of

ignition timing, peak chamber pressure and temperature

increased and brake thermal efficiency initially went up and

then declined [10e13]. A H2NG blends ranging in 0%e30% vol.

of hydrogen fraction are built in a conventional and

condensing boilers and investigate the effects of alternative

fuel on combustion performance and exhaust emissions in a

diesel engine that showed combustion efficiency increase and

hydrocarbon (HC), carbon monoxide (CO) emissions have

decreased [14,15].

Design of model and it's implemented is one of the most

commonly used methods for studying and evaluating engine

behavior and performance versus design changes and the use

of fuel combinations. A lot of research has been done in this

regard [16e19]. Most of them were modeled based on two

methods: black-box and experimental-mathematical. Most

scholars tend to use black-box modeling techniques such as

the artificial neural network (ANN) and support vector ma-

chine (SVM). Because these methods find the relationships

between the variables with the acceptable precision without

evaluating statistical assumptions and with the aid of exper-

imental examples. In the present study, the SVM method is

used to study and optimize engine behavior. SVM's success in

modeling engine behavior has been considered in various

study situations [20e22]. Also for modeling complex systems

can use of function approximation and regression [23]. The

results of Xiao et al. relate to the prediction of the marine

diesel engine performance showed that the accuracy of the

prediction and generalization capability of the SVM model is

more acceptable than ANN [20]. Against, ANNmodelmay face

the overfitting problem and local minima. With the aid of the

generated model, it is possible to examine the effect of each

parameter changes on the engine performance and plotting

the response levels. Neural network in the adaptive neuro-

fuzzy inference system adjusts parameters of membership

function in the fuzzy logic of the fuzzy inference system. And

learning algorithm is used for training this network using the

simulation show the effectiveness of the developed method

[24,25]. Also, the design of a novel intelligent controller based

on the adaptive neuro-fuzzy inference system is confirmed by

simulation results and the effectiveness of the proposed

controllers was verified [26,27]. It should also be noted that

neuro-fuzzy techniquewas applied to the fractal data because

of high nonlinearity of the data. The neuro-fuzzy approach is

used to detect the most important variables to the fractal di-

mensions [28].

Therefore, to achieve optimal operating conditions, the

optimization techniques should be used. Genetic Algorithm

(GA) is one of the most common methods for finding optimal

parameter values in a model to maximize and minimize

response variables. Based on the Darwinian Theory, GA lo-

cates and finds the best solutions in the variable definition

space. Various studies have been used in the GA model to

optimize the engine. Zhang and colleagues optimized NOx,

PM, HC, CO and BSFC variables in a diesel engine with fueled

soy biodiesel. Bertram and colleagues with the GAmodel have

been able to optimize the BSFC and pollutants of a diesel en-

gine. Lotfan et al. also utilized GA to optimize the emissions of

a diesel engine fueled by CNG and diesel [29]. Other Similar

studies have been done to optimize with GA on internal

combustion engines [30].

Resource surveys showed that most studies have sought to

add hydrogen to fuel. Also, in other studies, themodeling of all

independent variables including the percentage of hydrogen

fuel, injection timing (IT) and ignition timing (IGT) at different

engine speeds has been discussed. Therefore, in this paper, we

seek to investigate the motor's behavior against H2% varia-

tions, IT, IGT and speed using the SVM model. Besides, with

the use of single-objective and multi-objective genetic algo-

rithms, we examined the conditions of the optimum param-

eters for different engine speeds. The structure of the paper

will be as follows: in the materials and methods section, the

procedure of the simulation with AVL fire and experimental

setup, SVM modeling, and optimization with the genetics al-

gorithm will be paid. In the results and discussion section,

also, first, the different SVM settings will be checked to ach-

ieve the desired response. Then the SVM surface response

graph is studied. To help the genetic algorithm, optimizing the

engine conditions at various speeds are examined. And

finally, the conclusion of this investigation will be presented.

The purpose of this study is to investigate the effect and

optimization of IGT, IT and H2% variables on engine perfor-

mance and exhaust emissions. Also, in this paper, the opti-

mization of engine performance at different engine speeds

was considered as the main scope due to different behavior at

various speeds.

Materials and methods

For this research, first, a single-cylinder gasoline engine

designed with CATIA software and simulated with AVL fire.

Then, with the help of real data obtained from testing, the

modeling precision was checked and confirmed. The SVM

Nomenclature

FCE Fuel conversion efficiency

SFC Specific fuel consumption

IGT Ignition timing

SVM Support vector machine

GA Genetic Algorithm

CVCB Constant volume combustion bomb

BTDC Before top dead center

LHV Lower heating value

CFD Computation fluid dynamics

IT Injection timing

CNGDI Compressed natural gas direct injection

ANN Artificial neural network

LS-SVM least square support vector machine

RBF radial basis function

RMSE Root mean squared error

MAPE Mean absolute percentage error

MOGA Multi-objective genetic algorithm

NSGA-II Non-dominated and crowding algorithm II
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model is also used to estimate engine variables in terms of

engine speed, H2%, IT and IGT. Eventually the engine opti-

mization conditions at different speeds investigated by the

SVM model and single-objective and multi-objective genetic

algorithm.

The operation condition and mesh generation

As showed in Fig. 1a typical CNGDI engine with a single cyl-

inder and two exhaust and intake valves is used. Fig. 1b shows

two different shapes of the piston that is used for examining

pattern and behavior of turbulence tumble and swirl intensity

field inside the cylinder to obtain suitable piston shape for the

combustion process. The piston B is deeper from piston A but

it was not positioned in the crown center. Gambit software

was used for generation mesh and hexahedral cells.

Mesh

Computation fluid dynamics (CFD) is an engineering tool used

to simulate the action of thermo-fluids in a system. It is used

by many industries in their development work to analyze,

optimize and verify the performance of designs before costly

prototypes and physical tests. In the CFD calculation, the finite

volume method is used. Mesh in 3D models which include

nodes, faces and volumes and numerical values for desired

quantities in node positions are calculated. In Fig. 2 is the

example of 2D mesh which represents nozzle (a nozzle

included some cell) and the mesh properties are shown. Blue

surfaces represent the calculationmesh and black lines walls.

The engine operating conditions for the baseline condition

of CFD simulation were chosen at a fixed speed at 2000, 3000,

4000, 5000 and 6000 rpm. The investigated engine operating

conditions covered certain variations in the intake tempera-

ture, injection timing, injection duration, and spark ignition

timing. The obtained engine operating conditions from the

experimental data of a single-cylinder research engine (SCRE)

are listed in Table 1.

The CFD simulation was executed by defining the events

for the engine cycle and it is started from the crank angle

degree of 0ºCA by defining the value of initial pressure and

temperature. The simulation finished at the crank angle de-

gree of top dead center, where the exhaust valves will be

opening. The measured intake temperature from the experi-

mental work has been implemented to the engine computa-

tional mesh, as the piezo static pressure boundary condition.

Injection and ignition timings were adjusted appropriately

according to increasing engine speeds. Engine operating

conditions are shown in Table 2.

Table 3 shows some properties of compressed natural gas

and hydrogen fuel combinations from 10% hydrogen added to

fuel (HCNG10%) to 50%(HCNG50%) under stoichiometric con-

ditions as can be seenwith the increase of hydrogen to natural

gas, LHV of the mixture increased.

Experimental setup

A 1.6 L, 4-cylinder spark ignition engine direct injection filled

with natural gas and hydrogen were installed to control the

HCNG (amixture of hydrogen and natural gas) operation. The

substantial advantage that CNG has in antiknock quality is

related to higher auto-ignition temperature and higher-

octane number. An engine control system and portable

exhaust gas analyzer were used for controlling engine op-

erations and recording engine performance and emissions

data.

The engine was converted to computer integrated CNG-

hydrogen fuel operation by installing a direct injection en-

gine. As shown in Fig. 3 and Fig. 4. The result was recorded in

steady-state condition. So ambient pressure, temperature,

and humidity were noted to estimate air inlet density. All tests

have been done at WOT (throttle position) and each test was

conducted several times.

The fuel used in this study is natural gas and hydrogen

which stored at 200 bar pressures and 250 bar pressures

respectively and was reduced by a pressure regulator.

Support vector machine (SVM)

In this study, SVMmodeling techniquewas used to investigate

the effects of four-engine control variables including IGT, IT,

H2% and speed on engine performance parameters including

FCE, power, torque, SFC, and CO (Fig. 5). With the assistance of

the SVM model, the response surface of each of the engine's

Fig. 1 e The computational domain of the engine model (a) and geometry of the combustion chambers on piston(b).

Fig. 2 e Mesh properties.
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variables was plotted and the effects of independent variables

were studied. It was also used as the fitness function in the

genetic algorithm. The reasons for encouraging us to use SVM

model include high computational speed, good generalization

[31], quadratic programming approach to problem-solving [32]

and its transparency feature [33]. In this paper, the least

square support vector machine (LS-SVM) was used. This

method is based on the least -squares cost function. SVM

model considers the nonlinear function (equation (1)) for the

training data set [34]. In this way, the relationship between

dependent variables can be obtained in terms of independent

variables. The steps of SVM diagramwill be described in Fig. 5.

The purpose of the SVMmodel is to estimate ŷ (the dependent

variables) studied in terms of x.

by¼
Xm

k¼1

ak:Kðx;xkÞ þ b (1)

where, ak ¼ ðak � a
*

kÞ, Kðx; xkÞ is the inner product of input

vector (x) and support vector (xk) and b is the bias term.

To calculate a
* ¼ ða*

1;a
*

2;…;a
*

kÞ
T
and a ¼ ða1;a2;…;akÞ

T the

optimization equation (2) needs to be solved.

Table 1 e Specification of the CNG-DI engine.

Engine parameter Value Unit Engine parameter Value Unit

Maximum rated power (kW/rpm) 82/6000 kW/rpm Intake valve opening 12 bTDC

Maximum rated torque (Nm/rpm) 148/4000 Nm/rpm Intake valve closing 48 aBDC

Stroke 84 mm Exhaust valve opening 45 bBDC

Connecting rod length 131 mm Exhaust valve closing 10 aTDC

Crank radius 44 mm Maximum intake valve lift 8.1 mm

Compression ratio 14 e Maximum exhaust valve lift 7.5 mm

Fuel CNG þ Hydrogen

Table 2 e Baseline engine operating conditions.

Engine Parameters and Unit Value

Engine Speed (rpm) 2000 3000 4000 5000 6000

CNG mass(mg) 5.2 5.2 5.2 5.2 5.2

Equivalence Ratio 1.0 1.0 1.0 1.0 1.0

Intake Port Temperature (K) 305 305 305 305 306

Intake Port Pressure (bar) 1.04 1.03 1.02 1.01 0.9

Start of Injection Timing (bTDC) 130 150 170 190 210

End of Injection Timing (bTDC) 80 100 120 140 160

Spark Ignition Timing (bTDC) 19 21 23 25 28

Injection pressure(bar) 20 20 20 20 20

Table 3 e Energy and Mass Composition of H2-NG fuel.

CNG HCNG10 HCNG20 HCNG30 HCNG40 HCNG50

H2(% Mass) 0 1.21 2.69 4.52 6.72 9.02

H2(% energy) 0 3.09 6.68 10.49 15.59 20.93

LHV(MJ/kg) 46.28 47.17 48.26 49.61 51.41 53.294

LHV stoich. mixture(MJ/NM3) 3.376 3.359 3.353 3.349 3.344 3.340

CNG mass(mg) 5.2 5.13708 5.06012 4.96496 4.855 4.7474

Hydrogen mass(mg) 0 0.06292 0.13988 0.23504 0.3450 0.4526

Fig. 3 e The engine test-bed. Fig. 4 e High pressure regulator panel.
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where ε and C are the hyper-parameters.

Two types of kernel functions, including the function of the

Gaussian (radial basis function (RBF)) and polynomial, were

used.

Kðxi; xÞ¼exp

�
kx� xik

2

s
2

�
(3)

Kðxi; xÞ¼ ½ðx*xiÞ þ 1�d (4)

where s > 0 is kernel's width, d is the polynomial degree

(d ¼ 1,2,3).

In this study, four types of kernel functions including

polynomial degree 1 (Poly1), polynomial degree 2 (Poly2),

polynomial degree 3 (Poly3) and RBF were used. The most

suitable kernel function was selected based on the size of the

R2 model in the training and testing phase.

As can be seen in the diagram below, the independent

variables include speed, IGT, IT and H2% and the dependent

variables are include power, torque, FCE, SFC and CO.

SVM assessment criteria

To evaluate the SVM model in the estimation of the response

surface of the engine parameters in terms of independent pa-

rameters, the error criteria including RMSE, MAPE and the

model's capability criteria including the efficiency of the model

(EF) and the coefficient of determination (R2), were used.

MAPE¼
1

n

Xn

j¼1

����
dj � pj

dj

����� 100 (5)

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1

�
dj � pj

�2

n

vuut
(6)

EF¼

Pn

j¼1

�
dj � d

	2
�
Pn

j¼1

�
pj � dj

�2

Pn

j¼1

�
dj � d

!2
(7)

R2 ¼

2

6666664

Pn
j¼1

�
dj � d

��
pj � p

�

Pn

j¼1

�
dj � d

�
�
Pn

j¼1

�
pj � p

�

3

7777775

2

(8)

where d and p, are the actual and predicted values of the engine

parameters respectively, and d and p are also average values.

The SVM's reliability will increase asmuch as SVM can estimate

engine parameters with less RMSE andMAPE, andmore R2 and

EF in both stages of training and testing. Also, to further assess

and ensure the validity of SVM results, statistical evaluation

including mean comparison, variance, and statistical distribu-

tion of two real and predicted data sets were also used. Thus,

Fig. 5 e SVM model structure.

8
>>>>>>>><

>>>>>>>>:

X

i;k

�
ai � a

*

i

	�
ak � a

*

k

	
Kðxi; xkÞ þ ε

Xk

i¼1

�
ai þ a

*

i

	
� d

Xk

i¼1

�
ai � a

*

i

	

sunbject to

Xk

i¼1

�
ai � a

*

i

	
¼ 0 and ai;a

*

i2½0;C�

(2)
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the null hypothesis implies the similarity of the two actual and

predicted data sets. The p-value statistic was used to evaluate

the statistical tests. If p-value> 0.05, then the two sets of data do

nothave a significant difference between eachother. Therefore,

the predictions of the model can be assured.

Optimization with genetic algorithm (GA)

After validation of the SVM model was confirmed in the

engine performance estimation. It was used as a fitness

function in the genetic algorithm. The genetic algorithm

was used to obtain the best engine operating conditions.

Optimum conditions in this paper include achieving the

highest level of power, torque, and fuel conversion effi-

ciency, and minimizing carbon monoxide emissions and

specific fuel consumption. With the use of GA, the optimal

levels of each of the independent variables IT, IGT and H2%

in different engine speeds are obtained. Because the engine

in different working conditions needs to different speeds

conditions, optimization was done in different runs. The

Table 4 e The result of the comparison of the CVCB experimental and simulated values.

H2 (%) Average Variance Skewness Kurtosis Pm Pv Pt

0 Simulated 1.48 1.08 0.37 1.42 0.94 0.95 0.88

Experimental 1.44 1.04 0.31 1.28

3 Simulated 1.47 0.98 0.31 1.37 0.98 0.93 0.88

Experimental 1.46 1.05 0.27 1.23

6 Simulated 1.53 1.05 0.21 1.32 0.93 0.98 0.88

Experimental 1.48 1.07 0.21 1.17

15 Simulated 1.65 1.14 0.005 2.75 0.93 0.92 0.88

Experimental 1.60 1.05 0.008 2.71

Pm, Pv, and Pt are equal to P-value of themean test, variance and statistical distribution of two simulated and predicted data sets at a probability

level of 5% in respectively.
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Fig. 6 e R2 values of the SVM model in the estimation FCE (a)، power (b)، torque (c)، SFC (d) and CO (e).
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engine Optimum conditions were investigated in two

single-objective and multi-objective situations. The pur-

pose of a single objective is to achieve an optimal point

without considering other goals. For example, just maxi-

mize power. Also, the purpose of multi-objectives is to

optimize engine conditions at different speeds to achieve

all goals together (Equation (9)). For this purpose, a multi-

objective genetic algorithm (MOGA) based on Pareto-

dominance and the non-dominated and crowding algo-

rithm II (NSGA-II) was used in MOGA.

8
>>>><

>>>>:

max fsvmðPowerÞ
max fsvmðTorqueÞ
max fsvmðFCEÞ
min fsvmðSFCÞ
min fsvmðCOÞ

(9)

Table 5 e The SVM model error values for estimating engine performance parameters and the statistical comparison
between simulated and predicted values.

FCE Power Torque

Train Test Total Train Test Total Train Test Total

RMSE 0.09 0.09 0.09 1.90 1.57 1.84 0.53 0.64 0.55

MAPE 0.24 0.26 0.89 3.88 2.99 3.72 0.37 0.47 0.39

EF 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98

Pm 0.96 0.92 0.99 0.96 0.96 0.98 0.90 0.99 0.91

Pv 0.85 0.88 0.81 0.74 0.91 0.81 0.72 0.67 0.63

Pt 0.95 0.99 0.88 0.53 0.99 0.67 0.95 0.99 0.95

SFC CO

RMSE 5.06 3.72 4.82 0.00 0.00 0.00

MAPE 3.17 2.61 3.06 3.64 3.35 3.58

EF 0.99 0.99 0.99 0.83 0.86 0.83

Pm 0.99 0.99 0.99 0.79 0.72 0.69

Pv 0.76 0.99 0.79 0.37 0.77 0.35

Pt 0.65 0.62 0.56 0.00 0.11 0.00

Pm, Pv, and Pt are equal to P-value of themean test, variance and statistical distribution of two simulated and predicted data sets at a probability

level of 5% in respectively.

Fig. 8 e The FCE response level graph between the independent variables H2%, IT and IGT at 4000 rpm for IT ¼ 170�(a),

IGT ¼ 28�(b) and H2 ¼ 30%(c).
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Fig. 9 e The curves of the power response level versus the independent variables H2%, IT and IGT at 4000 rpm for

IT ¼ 170�(a), IGT ¼ 28�(b) and H2 ¼ 30%(c).

Fig. 10 e The curves of the torque response level versus the independent variables H2%, IT and IGT at 4000 rpm for

IT ¼ 170�(a), IGT ¼ 28�(b) and H2 ¼ 30%(c).
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The optimal GA solutions are based on the principle of

natural selection and genetic theories. First, GA provides

random solutions to the definition of independent variables.

Then, next generations generate the possible solutions after

the evaluation of fitness function with the help of selection,

crossover and mutation operators. The generation of

different generations of solutions continues to the point

where there is no longer any way to achieve new solutions.

MATLAB software was used for SVM modeling and GA

optimization.

Results and discussion

The experimental methods ratio to simulation methods re-

quires costing and adequate time. So, the AVL fire software

used for engine simulation. To validation and reliability of the

simulation model, the experimental and simulation results of

constant volume combustion bomb (CVCB) compared [35].

In the present study as the meshing procedures and sub-

models used in CNG-DI engine, combustion simulation was

also used in the CVCB combustion simulation. As the valida-

tion was done for 100% natural gas combustion as well as

different blends of hydrogen-natural gas in CVCB.

Statistical comparisons were used to compare the

experimental and simulated results. The average, vari-

ance, skewness, and kurtosis values of experimental and

simulated results with the percentage of hydrogen in the

blend are presented in Table 4. For statistical comparison

of the mean value, variance and statistical distribution of

two real and simulated data sets, t-test, F-test and

Kolmogorov-Smirnov tests were used at 5% probability

level. The p-value of each of these tests is shown in Table

4, with the Pm, Pv, and Pt, respectively. As the results

show, the values p-value are greater than 5%, so no sig-

nificant differences were found between experimental

values and simulations. Therefore, the results simulated

by AVL fire can be trusted.

The best choice of the kernel function for SVM

For modeling of engine parameters, four types of kernel

functions in SVM are used: polynomial degree 1 (Poly1),

polynomial degree 2 (Poly2), polynomial degree 3 (Poly3) and

RBF function. The results of three stages of training, testing,

and total (both training and testing) indicate that the RBF

function is considered to be the most suitable type of kernel

function in SVM to evaluate engine parameters (Fig. 6).

Comparative evaluation of SVM model predictive validity

In Fig. 7, the result of the validation of the SVM model pre-

diction is shown on five performance parameters of the en-

gine in the training and testing stages. As the results show,

Fig. 11 e The curves of The SFC response level versus the independent variables H2%, IT and IGT at 4000 rpm for

IT ¼ 170�(a), IGT ¼ 28�(b) and H2 ¼ 30%(c).
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there is a good agreement between actual and predicted

values of engine performance parameters other than CO (in all

cases, R2 is greater than 0.98). Therefore, the SVM model can

well provide the relationship between independent variables

(H2%, RPM, IGT and IT) and dependent variables including

engine performance parameters.

In Table 5, the error values of the model (RMSE and MAPE),

the efficiency of the model (EF) and the similarity and equality

results of the statistical assessment including mean value,

variance and statistical distribution of the simulated data sets

and predicted by the SVM model is presented in three stages:

training, testing, and both stages of total. As the results show,

the SVM model has been able to predict FCE, Power, Torque,

and SFC with a greater EF of 98% and less than 4% error. Also,

the statistical test between two simulated and predicted data-

sets by SVM model showed that the maximum significant dif-

ference between them is in the 5% probability level (in all cases

p-value> 0.05). Besides, the SVM model was able to predict CO

with a maximum error of 3.58 with a predicted EF of more than

83%. Two simulated and predicted datasets of CO emission did

not have a significant difference in terms of mean values and

variance. According to all the results, it can be stated here that

the SVM model has a good ability to predict the performance

parameters of the engine in terms of independent variables. So

that the results will be useable and can predict.

The response surface graphs of engine performance

parameters using the SVM model

After that, the research results were proven that can rely on

the results of the prediction of the SVM model, by which the

response surface graphs of dependent variables were plotted

in terms of independent variables. In Fig. 8, the FCE response

level of the engine is shown at 4000 rpm against H2%, IGT, and

IT. As shown in Fig. 8 (a), with assuming IT¼ 170, increasing of

H2% as well as increasing the IGT, the functional parameter

FCE has an upward trend. In this situation, the highest

amount of FCE obtained at 30% of hydrogen and with IGT at

28�. In Fig. 8 (b), the FCE changes in terms of hydrogen and IT

were plotted with the assumption of IGT ¼ 28�. In this case,

the FCE increased with an increase in both parameters of H2

and IT simultaneously. The highest FCE was obtained at

IT ¼ 204 and H2 ¼ 30%. The effect of the changes in the two

independent parameters of IT and IGT in H2 ¼ 30% on FCE can

be seen in Fig. 8 (c). As the results show, the two parameters of

IT and IGT have significant interaction with FCE changes. The

effect of IGT on FCE variations is dependent on the amount of

IT. So that the opposite of this subject is true. However, the

highest FCE value is obtained at IGT ¼ 31 and IT ¼ 200.

In Fig. 9, the relation between the power response level and

independent variables studied at 4000 rpm is shown. As can be

seen, the effect of IGT on power increase is much higher than

that of H2 (Fig. 9 (a)). Because the slope of power changes versus

the increase of IGT at different levels of hydrogen is higher.

Besides, the highest power levels were obtained at IGT ¼ 29�

and 30%H2. The same process of change can also be seen for IT

(Fig. 9 (b)). Therefore can reach to the highest power by taking

IT ¼ 221� and H2 ¼ 26%. Therefore, the impact of IGT and IT on

increasing power is greater thanH2. Also, based on Fig. 9 (c) can

say that the two parameters of IT and IGT have a significant

interaction effect on power changes. Also, IGT's impact on

power increase is more than IT. Of course, the highest amount

of power is available when IGT ¼ 30� and IT ¼ 214�.

Fig. 10 illustrate variations of torque versus three inde-

pendent variables H2, IGT and it at 4000 rpm. The results

showed that at each level of H2, with a decrease of IGT, the

variation of torque is upward (Fig. 10 (a)). But the highest

torque is achievable in IGT ¼ 20� and the use of 24%H2. In

terms of torque variations in terms of IT and H2, it can be said

that with increasing H2 the torque is always increased. In

terms of torque variations against IT andH2, it can be said that

with increasing H2 the torque is always increased. Neverthe-

less, the amount of IT effects on these changes. As with
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increasing IT to 160� BTDC, the trend of torque is upward and

then decreasing. But the effect of torque changes due to IT is

much more than the percentage of hydrogen (Fig. 10b). In this

case, the highest torque is obtained at IT ¼ 178� and 25%H2.

The trend of torque changes in terms of changes the two

variables of IT and IGT can be seen in Fig. 10 (c).

In Fig. 11 the SFC response level can be seen in terms of the

three variables H2, IT and IGT at 4000 rpm. Increasing the IGT

to 21� before top dead center reduced the SFC, and then the

trend of SFC was upward. The lowest amount of SFC is ob-

tained at 22% H2 and IGT at 21� (Fig. 11 (a)). As shown in Fig. 11

(b), the increase in IT will reduce SFC. Also, the effect of going

up IT on SFC reduction is much more than adding hydrogen

percentage. Similar to the previous results, the two IT and IGT

variables have a very significant interaction effect on the SFC

variations. The lowest SFC values are also available in the

combination of IGT ¼ 21� and IT ¼ 146�. The results also

showed that the CO response surface graph is similar to the

changes in the engine's performance parameters and is

affected by four independent engine, IT, IGT, and H2 variables.

Optimization of engine performance parameters using a

genetic algorithm

As the response level results indicate, each of the engine's

performance parameters varies according to the value of the

independent variables. But our studies showed that the

optimal value of the three independent variables of IT, IGT

and H2% varies at different engine speeds and this subject can

be seen in Fig. 12. Using the single-objective genetic algorithm

and the SVMmodel, the optimal values of IT, IGT and H2 were

calculated to obtain the maximum power, torque, and FCE,

and the minimum SFC at different speeds (Fig. 12). As the re-

sults show, the optimal amount of H2 varies at different

speeds. To reach a maximum FCE at 4000 rpm, it needs to 30%

H2 fuel. But then, with increasing engine speed, the percent-

age of hydrogen to reach the maximum FCE should be

reduced. Similarly, in order to achieve the highest possible

power, the consumption ratio of hydrogen fuel should be

reduced. But in order to maximize torque over different en-

gine speeds, hydrogen should be used up to 3000 rpm, and the

consumption of hydrogen should be at a constant rate. And

similarly, the optimal amount of other variables, including IT

and IGT, varies at different speeds (Fig. 12 b and c). Therefore,

these results confirm the fact that it is necessary to use in-

dependent variables to achieve the best-operating conditions

of the engine at different speeds from different optimal

values. On the other hand, the results of this section are ob-

tained using a single-objective genetic algorithm. In other

words, here the optimal values of the variables are obtained

only by considering one of the goals. But in reality, all goals

must be considered together. For this purpose, the multi-

objective genetic algorithm was used.

According to the previous results of a single-objective

genetic algorithm, it cannot be performed separately for

obtaining all goals, because each of the optimization goals

of the engine performance parameters is in contradiction

with each other especially in various engine speeds. So, we

optimize the engine performance parameters at each speed

by the multi-objective model (Figs. 13 and 14). Here at each

speed of the engine, we simultaneously sought to find

levels of independent variables including IT, IGT, and H2 to

maximize power, torque and fuel conversion efficiency, as

well as minimize SFC and CO. Fig. 13. Show the results of
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optimization of independent variables in different speeds.

As the results confirm, in order to achieve the three goals

of maximization and two goals of minimization, it is

necessary to use 30% hydrogen in the blend of fuel to

3000 rpm. Subsequently, the amount of hydrogen was

reduced by a gentle gradient to reach to 20% until 5000 rpm

and up. In order to keep the engine in optimal condition,

the hydrogen percentage in the blend of fuel should be

controlled in proportion to the engine speed. The need to

high levels of hydrogen in the low speed is due to incom-

plete combustion and low speed of combustion but in the

higher speeds, the hydrogen consumption should be

reduced due to the complete combustion process. But in

any case, the results indicate that the optimum use of

hydrogen in the various engine speeds is between 20% and

30%. The optimization result of the two variables, IGT and

IT shows that their optimal values vary at different speeds

(Fig. 13 b and c). Fig. 14 Shows the results of applying in-

dependent variables at optimal levels for the five targets

considered in different engine speeds. As can see, the FCE

decrease with an increase of engine speed and keeping

independent variables in optimal condition (Fig. 14a).this is

due to the higher power and more efficiency at high speed.

Conclusions

In this paper, the SVM model was used to estimate the engine

performance parameters including FCE, power, torque, SFC,

and CO. The results of the SVMprediction showed that there is

no significant difference between the actual and the predicted

values and the maximum predicted model error is approxi-

mately 4% also, SVM model response levels were plotted to

independent variables including rpm, H2%, IT and IGT.

1. Investigating the level of FCE response showed that the

effects of three independent variables including IT, IGT and

H2% on FCE are significant.

2. The power response level obtained by the SVM model

showed that the IGT's impact on power is much higher

than that of H2%. The impact of IGT and IT on increasing

power is higher than H2. The two parameters of IT and IGT

have a significant interaction effect on power changes.

Also, IGT's impact on power increase is more than IT.

3. Investigation on the torque changes in terms of IT, IGT

and H2% showed that torque increases with decreasing

IGT. Also, with increasing H2, torque is always increased.
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But IT effects on these changes. As the impact of torque

changes due to IT is much higher than the percentage of

hydrogen.

4. The response level of the SFC in terms of the three vari-

ables H2%, IT and IGT showed that with increasing the IGT

to 21� BTDC, the SFC decreases and then increases. The

results also indicated that increment of IT decreased SFC

parameter. Also, the effect of the increase of IT on SFC

reduction is much higher than adding hydrogen percent-

age in the blended fuel.

5. The results of optimizing the engine performance param-

eters using a single-objective genetic algorithm showed

that the optimal values of the independent variables vary

in different speeds. Therefore, in order to keep the engine

in optimal condition, it is necessary to use different vari-

able regimes in each engine. Our investigations also

showed that if only one goal was considered, contradictory

levels of variables were obtained. Therefore, to achieve a

comprehensive result for each speed, a multi-objective

genetic algorithm should be used.

6. In a multi-objective genetic algorithm for each engine

speed, it simultaneously sought to find levels of inde-

pendent variables including IT, IGT and H2% to maxi-

mize power, torque and fuel conversion efficiency as

well as minimize SFC, and CO. The results confirmed

that in order to achieve the three goals of maximization

and two minimization goals, and keeping the engine

condition in the optimal case, the hydrogen percentage

in the blend should be controlled in proportion to the

engine speed. But in any case, the results indicate that

the optimum use of hydrogen in the various engine

speeds is between 20% and 30%. The result of opti-

mizing the two variables, IGT and IT, also shows that

their optimal values vary in different speeds. In overall,

for this engine, it can be concluded that converting a

port injection engine into a direct injection and adding

hydrogen fuel between 20% and 30% to CNG at different

speeds according to changing IGT and IT has the best

achievement.

Appendix A. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.ijhydene.2019.10.250.
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